
Das Oszilloskop

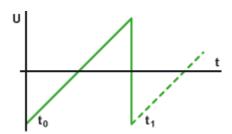
Was ist ein Oszilloskop?

- Elektronisches Messgerät zur Darstellung und Messung elektrischer Spannungen auf einem Bildschirm
- Spannung auf x-Achse, Zeit auf y-Achse
- Strom kann über ohmsches Gesetz berechnet werden
- Das Bild auf dem Oszilloskop nennt man Oszillogramm

Funktionsweise

Analoges Oszilloskop

Quelle: http://upload.wikimedia.org/wikipedia/de/d/d7/Oszilloskopschema.PNG

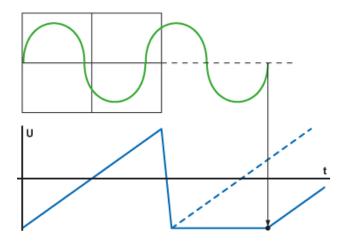

Aufbau:

1.

- Beheizte Kathode liefert Elektronen, die von der Anode angezogen werden
- Die Helligkeit des Bildes wird im sogenannten Wehneltzylinder (Steuerelektrode) durch die Geschwindigkeit und Dichte der Elektronen gesteuert
- Die Dichte des Strahls wird durch Fokussierung im Wehneltzylinder und die Geschwindigkeit durch die Anode geregelt.

2

- Ablenkplatten steuern die Richtung des Elektronenstrahls und ermöglichen den zeitlichen Verlauf der Spannung darzustellen.
- Waagerechte Platten für Spannungsmessung, Senkrechte Platten für zeitliche Ablenkung mittels Sägezahngenerator

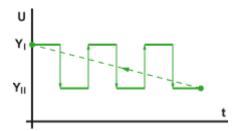

Quelle: http://www.elektronik-kompendium.de/sites/grd/diagramm/03070811.gif

- Ein Verstärker ist den Platten vorgeschaltet damit auch kleine Spannungen angezeigt werden können

3.

- Elektronen bringen Leuchtschicht zum leuchten

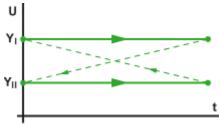
Triggerung:



Quelle: http://www.elektronik-kompendium.de/sites/grd/diagramm/03071311.gif

- Erzeugt stehendes Signal auf dem Bildschirm
- Das Sägezahnsignal ist der Trigger
- Triggert erst erneut, wenn das Signal wieder die gleiche Größe und Richtung hat wie beim Anfangspunkt

Mehrkanaldarstellung:


Chopped:

Quelle: http://www.elektronik-kompendium.de/sites/grd/diagramm/03070813.gif

- Signal 1 und 2 werden abwechselnd dargestellt
- Nachteil: Signale nicht kontinuierlich, deswegen eher geeignet bei niedrigen Frequenzen

Alternated:

Quelle: http://www.elektronik-kompendium.de/sites/grd/diagramm/03070812.gif

- Signal 1 und 2 werden nacheinander dargestellt
- Geeignet bei mittleren bis hohen Frequenzen

Digitales Oszilloskop

- Führt Analog-Digital-Umwandlung durch und kann Spannungsverläufe speichern
- Hat mehr Funktionen, z.B.: Math-Funktion; durch Speichern kann man das Signal anhalten und sich einen bestimmten Bereich ansehen; Anstiegszeit, Frequenz, Amplitude, Mittelwert usw. können angezeigt werden
- Verschiedene Farben möglich
- Je höher Abtastrate desto genauer

Bedienung des Oszilloskops

Am Beispiel: LeCroy Wave Surfer 434

Knöpfe 1-4: Signalquelle auswählen

Auto Setup

Stellt automatisch Trigger, und Größe des Signals ein, sodass es bestmöglich auf den Bildschirm passt

Horizontal

Delay: Signal auf X-Achse verschieben, drücken \rightarrow Delay = 0

s ⇔ ns: Signal in X-Richtung strecken

Vertikal

Offset: Signal auf Y-Achse verschieben, drücken \rightarrow Offset = 0

V⇔mV: Signal in Y-Richtung strecken

Adjust:

Stellt die Schärfe des Signals ein

Trigger

Level: Triggerpunkt auswählen

Auto: Triggerpunkt wird automatisch ausgewählt

Normal: Fixiert das Signal nach jedem Triggerpunkt erneut

Single: Fixiert das Signal nach einem Triggerpunkt

Stop: Fixiert das Signal

Math

Führt mathematische Berechnungen mit ein bis zwei Signalen durch und erzeugt eine zusätzliche Kurve mit dem Ergebnis. (z.B. Fouriertransformation)

Zoom (Lupe)

Erzeugt zusätzlichen Plot mit vergrößertem Inhalt des ausgewählten Plots

Measure

Führt verschiedene Messungen mit dem Signal durch.

Horizontal: Zeitmessungen (z.B. Frequenz)

Vertikal: Spannungsmessungen (z.B. Amplitude)

Puls: Messungen an (z.B. Abstand zwischen Nulldurchgängen)

Cursors

Type: Wählt aus zwischen horizontalen, vertikalen oder keinen Cursors

Knöpfe: Bewegen Cursors

Quellen

http://www.tequipment.net/pdf/LeCroy/WaveSurfer gettingstarted.pdf

http://de.wikipedia.org/wiki/Oszilloskop

http://www.elektronik-kompendium.de/sites/grd/0307081.htm

Grundlagen der Elektrotechnik 2, Manfred Albach