DCF77 Zeitsignal

Sebastian Lauck

Fakultät IV Technische Universität Berlin Projektlabor

22. Mai 2014

Inhaltsverzeichnis

- 1 Allgemeines
- 2 Sender
- 3 Signal
- 4 Empfang
- 5 Dekodierung
- 6 Quellen

Was ist DCF77?

- DCF77 ist ein Zeitzeichensender
- sendet zuverlässiges Zeitsignal
- sendet Normalfrequenz

Wozu dient DCF77?

- Darstellung der gesetzlichen Zeit
- Zeitdienstsysteme (Bahn, Telekommunikation, uvm...)
- Tarifschaltuhren
- Uhren in Ampelanlagen
- Privathaushalte
- Normalfrequenz f
 ür Kalibirierung von Frequenzgeneratoren

historische Daten

Allgemeines

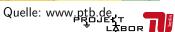
- 1. April 1893 Gesetz betreffend die Einführung einer einheitlichen Zeitbestimmung
- Seit 1959 Normalfrequenz über DCF77 von Physikalisch-Technische Bundesanstalt(PTB)
- ab 1973 Sendung von Uhrzeit und Datum
- ab 1. August 1978 mit dem Gesetz über die Zeitbestimmung gesetzliche Zeit von PTB definiert, dargestellt und verbreitet

Standort

- Sendemasten und Steuerungseinheiten in Mainflingen bei Frankfurt
- zentrale Lage
- hoher Grundwasserspiegel führt zu guter Erdung
 - → hoher Wirkungsgrad

Erzeugung des Signals

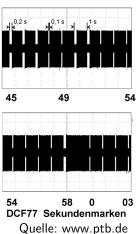
- 3 Atomuhren liefern Takt für Erzeugung der Trägerfrequenz und des Zeitcodes → sehr geringe Abweichungen im milliardstel Sekundenbereich/Tag
- interne Konsistenzprüfung verhindert Aussenden von falschen Zeitsignalen
- Zeitsignal wird auf Trägerfrequenz moduliert
- Betriebssender 50kW-Halbleitersender



Sender **Signal** Empfang Dekodierung Queller

Trägerwelle

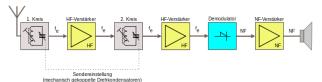
- Langwelle mit präzisen 77,5 kHz
- Ausbreitung als Boden- und Raumwelle
- Reichweite etwa in einem Umkreis von 2000km
- unter bestimmten Bedingungen in weit größeren Entfernungen empfangbar



Sender Signal Empfang Dekodierung Quellen

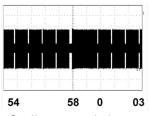
Zeitzeichen

- 60s dauerndes Zeitsignal
- pro Sekunde Absenkung der Amplitude auf 25% als Sekundenmarke
- 0,1s für logisch 0
- 0,2s für logisch 1
- zwischen Sekunde 58 und 59 keine Absenkung
- $lue{}$ ightarrow 59 Bit langes Telegramm



Empfang und Demodulation

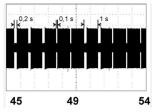
- z.B. mit Geradeausempfänger
- Antenne
- Schwingkreis
- HF-Verstärker
- Demodulator (Gleichrichtung und RC-Tiefpass)
- NF-Verstärker



Quelle:de.wikipedia.org/wiki/Geradeausempfänger

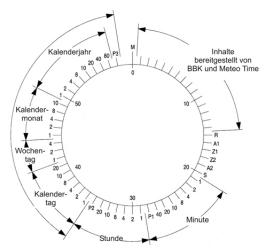
Auswertung des DCF Signals

- Zuerst Synchronisationsmarke finden
- Zählerstart bei aufsteigender Flanke
- Zählerrücksetzung bei fallender Flanke
- $lue{t} > 1s \rightarrow Beginn des Zeitsignals$



Quelle: www.ptb.de

Auswertung des DCF Signals


- Erkennung der Nullen und Einsen ebenfalls mit Zähler
- Messen von zeitlichem Abstand zwischen fallender und steigender Flanke
- oder Auswertung des Signals 150ms nach fallender Flanke
- $lue{}$ ightarrow Datentyp long mit 59 Bits

Quelle: www.ptb.de

Zeitcode

Zeitcode

Sekunde	Bedeutung
0	immer 0
1-14	verschlüsselte Wetterdaten und Bevölkerungswarnung
15	Unregelmäßigkeiten beim Sender
16	Umstellung Winter/Sommerzeit
17	Sommerzeit
18	Winterzeit
19	Schaltsekunde
20	Zeitbeginn
21-27	Minuten: 1 2 4 8 10 20 40
28	even Parity Bit Minuten
29-34	Stunden: 1 2 4 8 10 20
35	even Parity Bit Stunden
36-41	Tag: 1 2 4 8 10 20
42-44	Wochentag (Mo-So) 1 2 4
45-49	Monat: 1 2 4 8 10
50-57	Jahr: 1 2 4 8 10 20 40 80
58	even Parity Bit Datum (36-57)
59	_ PŖ <u>c</u>
	0 1-14 15 16 17 18 19 20 21-27 28 29-34 35 36-41 42-44 45-49 50-57 58

Quellenangabe

- http://www.ptb.de/
- http://www.dcf77.de/
- http://www.lothar-miller.de/s9y/categories/56-DCF77
- http://www.wolfgang-back.com/PDF/DCF77.pdf
- http://www.mikrocontroller.net/
- http://de.wikipedia.org/

