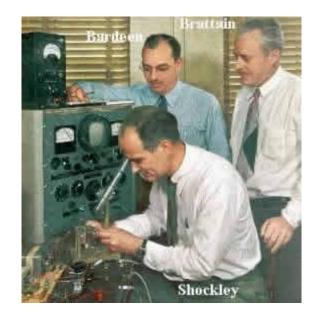
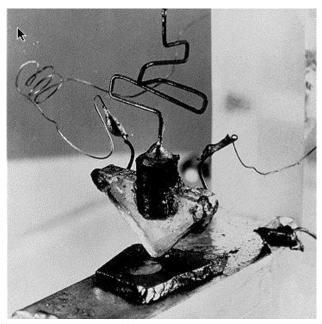

Transistoren

- David Schütze
- Projekt: Search-E
- Gruppe B2
- Betreuer: Sascha Eden

Gliederung

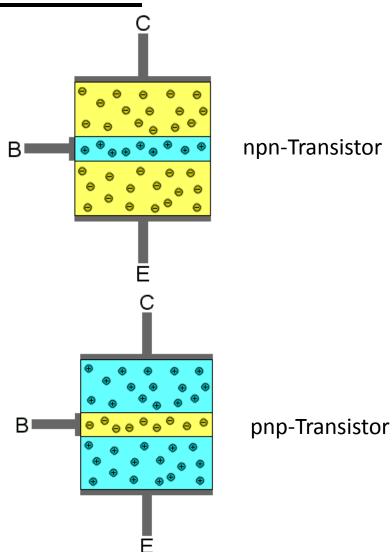

- Was ist ein Transistor
- Geschichte
- Bipolartransistor
- Feldeffekttransistor
 - Sperrschicht-FET (JFET)
 - MOSFET
- Anwendungsbereiche des Transistors
- Quellen

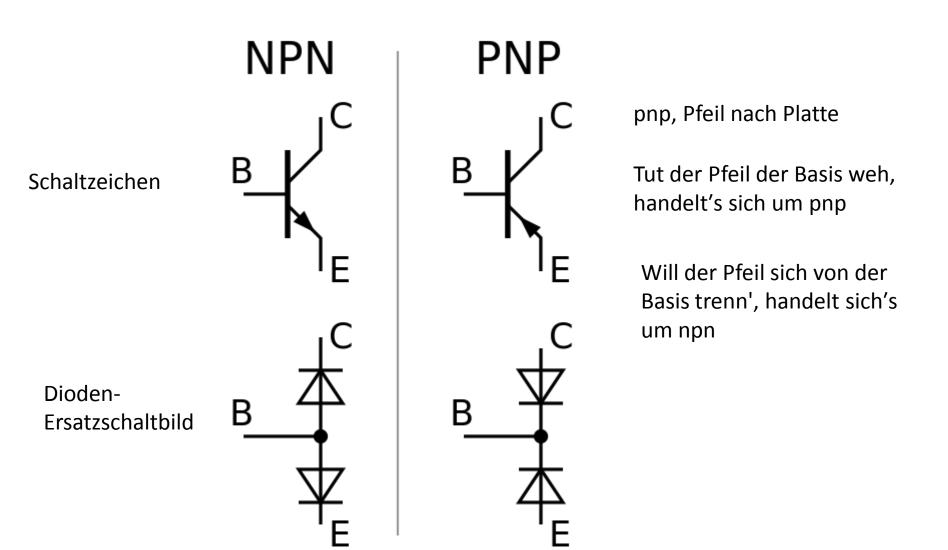
Was ist ein Transistor


- Eins der wichtigsten aktiven Bauelemente in der modernen Elektronik
- elektronisches Bauelement zum Schalten und Verstärken von elektrischen Signalen
- Begriff "Transistor" Kurzform des englischen transfer resistor
- 2 grundsätzlichen Funktionsprinzipien: Bipolartransistoren und Feldeffekttransistoren (FET)
- Viele Anwendungsgebiete: z.B Nachrichtentechnik, Leistungselektronik oder Computersystemen

Geschichte

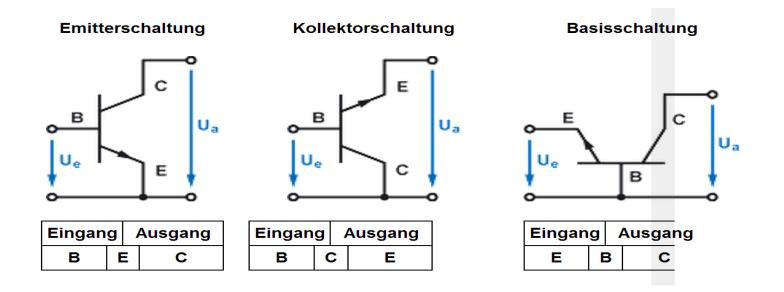
- •Idee zum Bau eines Transistors hatte 1928 <u>Julius Edgar Lilienfeld</u>
- erste funktionierender Transistor
 1948 von <u>John Bardeen</u>, <u>Walter H.</u>
 <u>Brattain</u> und <u>William Shockley</u>
 erfunden
- •1954 Wechsel vom temperaturempfindlichen
 Germanium zum unempfindlichen
 Silizium → Siegeszug der
 Transistors nicht mehr aufzuhalten
- •Für ihre Forschung erhielten Bardeen, Brattain und Shockley 1956 den Nobelpreis


http://www.leifiphysik.de/sites/default/files/medien/trans_erf01k_transistor_ges.jpg

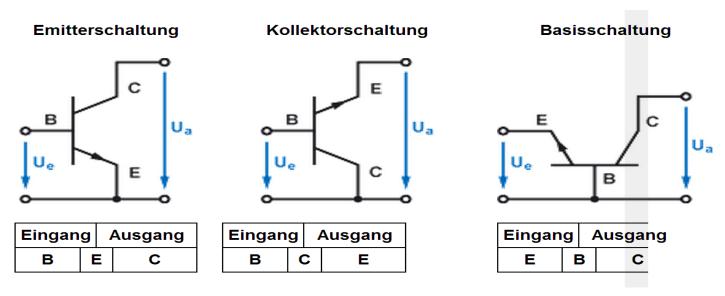


http://hobbyelektronik.de.tl/Der-erste-Transistor-der-Welt.htm

Bipolartransistor

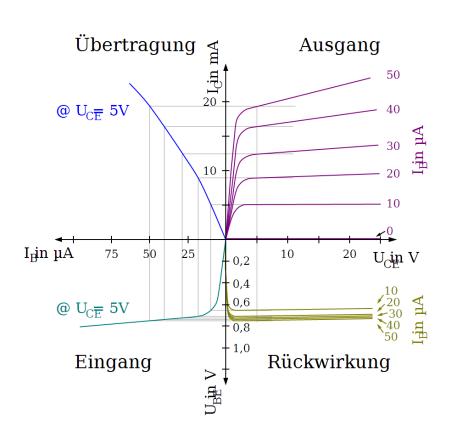

- Beide Ladungsträgerarten (Löcher und Elektronen) tragen zum Stromfluss bei
- Besteht aus 3 abwechselnd p und ndotierten Halbleiterschichten
- Anschlüsse: Kollektor (C), Basis (B) und Emitter (E)
- npn-Typen und pnp-Typen, Buchtaben geben Reihenfolge der Beschichtung

Grundschaltungen


- 3 Transistor-Grundschaltungen: Emitterschaltung, Kollektorschaltung und Basisschaltung
- Bezeichnungen richten sich nach dem gemeisamen Anschluss von Eingang und Ausgang

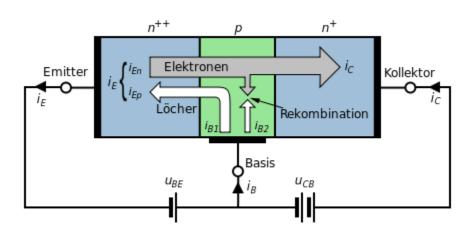
http://www.elektronik-kompendium.de/sites/slt/0203111.htm

Einsatzgebiete


- **Emitterschaltung**: in vielen Bereichen, z.B in Kleinsignal-Verstärkern und elektronischen Schaltern
- Kollektorschaltung: Impedanzwandler, als Vorstufe vieler Endstufen, in Kondensator- und Elektret-Mikrofonen
- Basisschaltung: HF-Stufen, HF-Oszillatoren ab ca. 50 MHz
- Häufigkeit: Emitterschaltung > Kollektorschaltung > Basisschaltung

Vergleich der Grundschaltungen

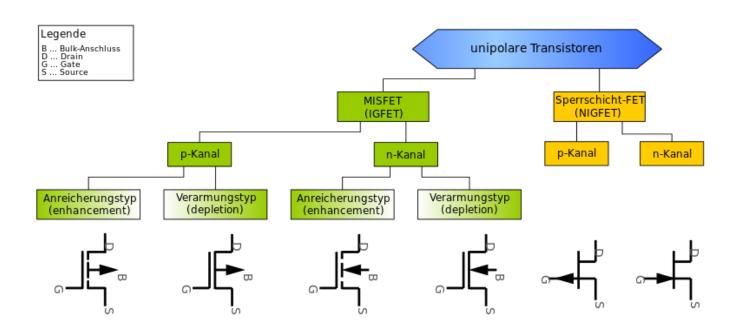
Schaltung	Emitterschaltung	Basisschaltung	Kollektorschaltung
Eingangswiderstand r _e	100 Ω 10 kΩ	10 Ω 100 Ω	10 kΩ 100 kΩ ↑
Ausganswiderstand ra	1 kΩ 10 kΩ	10 kΩ 100 kΩ	10 Ω 100 Ω
Spannungsverstärkung V _u	20 100 fach	1001000 fach	<=1
Gleichstromverstärkung B	10 50 fach	<=1	104000 fach
Phasendrehung	180°	0°	0°
Temperaturabhängigkeit	groß	klein	klein
Leistungsverstärkung V _p	Sehr groß	mittel	klein
Grenzfrequenz fg	niedrig	hoch	niedrig
Anwendungen	NF- und HF-Verstärker Leistungsverstärker Schalter	HF-Verstärker	Anpassungsstufen Impedanzwandler


Kombiniertes Kennlinienfeld

- **Eingangskennlinienfeld**: Basisstrom IB wird gegen die Basisspannung UBE aufgetragen
- Ausgangkennlinienfeld: Abhängigkeit des Kollektorstroms Ic von der Kollektor-Emitterspannung Uce bei ausgewählten Basissteuerströmen IB
- Übertragungskennlinienfeld:
 Abhängigkeit des Kollektorstroms Ic vom ansteuernden Basisstrom IB bei konstanter Kollektor Emitterspannung Uce
- Rückwirkungskennlinienfeld:
 Rückwirkung der Ausgangsspannung Uce
 auf den Eingang Uße

Funktionsweise des Bipolartransistors

- ein kleiner Strom I_B zwischen Basis und Emitter steuert einen stärkeren Strom I_C zwischen Kollektor und Emitter
- Da I_B nur die BE-Sperrschicht leitend machen muss, genügt hier ein kleiner
- Die einmal in die Basis gelangten Elektronen fließen zum größten Teil weiter zum Kollektor
 - → ein ca. 100x größerer Strom wird durch einen kleinen gesteuert
 - Verhältnis ist vom Typ abhängig
 - Stromverstärkungsfaktor β:
 Größenordnung: 4 1000, je
 nach Konstruktion des
 Transistor
 - größte Anwendungsgebiet sind Verstärkerschaltungen


http://commons.wikimedia.org/wiki/File:NPN_BJT_Basic_Operation_%28A ctive%29_DE.svg

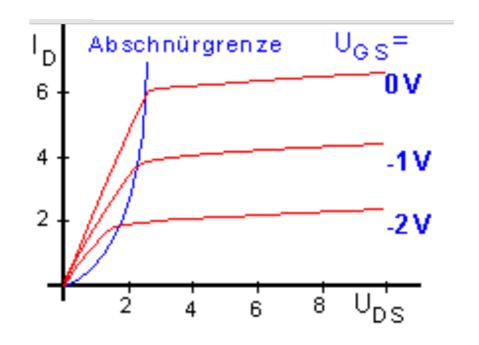
Feldeffekttransistor (FET)

- abgekürzt FET, oder auch unipolare Transistoren
- Stromtransport nur durch eine Ladungsträgerart (Elektronen bei n-leitenden Substrat und Löcher bei p-leitenden FET)
- Stromtransport wird vom elektrischen Feld der angelegten Spannung gesteuert → spannungsgesteuert
- sehr hohe Eingangswiderstände → fast leistungslose Ansteuerung
- drei Anschlüsse: D (=Drain), S (=Source) und G (=Gate)
 - MOSFETs: weiterer Anschluss: Bulk (Substrat)(meist mit Source-Anschluss verbunden)

Unterscheidungen:

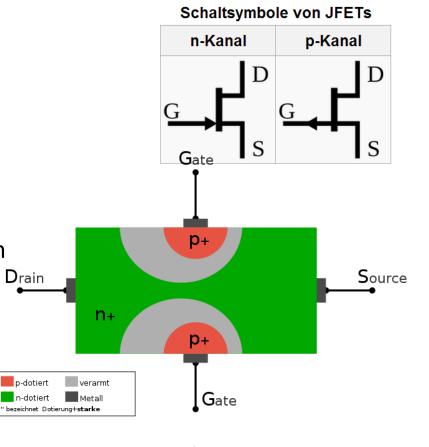
- Sperrschicht-FETs (JFETs) und FETs, mit einem durch einen Isolator getrenntem Gate (MISFET, MOSFET)
- •je nach Dotierung zwischen n- und p-FETs,
- •bei MOSFETs weiter in selbstleitende und selbstsperrende Typen

Aufbau verschiedener FETs



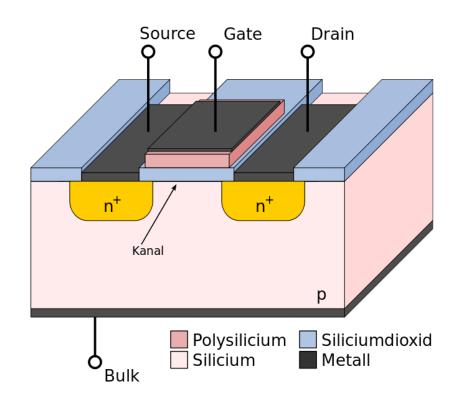
Schema eines n-Kanal-MOSFET

Schema eines n-Kanal-JFET


<u>Kennlinienfeld</u>

- Jede der Kennlinie gilt für eine bestimmte Gatespannung UGS
- Bei einer Gatespannung von OV ist die Sperrschicht am schmalsten
- → dort fließt der größte Strom ID durch den Kanal
- Ab der Abschnürgrenze lässt sich der Strom nicht mehr durch den Kanal erhöhen

Sperrschicht-FETs (JFETs)


- immer selbstleitend
- besonderer Vorteil: großer Eingangswiderstand
- →leistungsarme Steuerung
- nicht für hochfrequente Anwendungen
- Anwendungsgebiete: Verstärker,
 Schalterstufen und Oszillatoren

n-Kanal-JFET

MOSFET

- Abkürzung für Metal Oxide
 Semiconductor Field Effect
 Transistor
- "metallisches" Gate durch ein Oxid (Isolator) vom stromführenden Kanal zwischen S und D elektrisch isoliert

Prinzipieller Aufbau eines n- Kanal MOSFETs im Querschnitt

Insgesamt 4 MOSFET-Typen: n- und p-Kanal-MOSFETs in Form von selbstleitenden oder selbstsperrenden Typen

	n-Kanal		
MOS-FET Typ	Anreicherungstyp (selbstsperrend)	Verarmungstyp (selbstleitend)	
I _D bei U _{DS}	positiv	positiv	
U _{GS} (Steuerspannung)	positiv	positiv/negativ	
Schaltzeichen	G D S	G D S	
Anwendung	Leistungsverstärker	Hochfrequenzverstärker, digitale integrierte Schaltungen	
	p-Kanal		
MOS-FET Typ	Anreicherungstyp (selbstsperrend)	Verarmungstyp (selbstleitend)	
I _D bei U _{DS}	negativ	negativ	
U _{GS} (Steuerspannung)	negativ	negativ/positiv	
Schaltzeichen	G D S	G D S	
Anwendung	Leistungsverstärker	Hochfrequenzverstärker	

<u>Anwendungsbereiche des Transistors</u>

- Der Transistor ist das zentrale Element der modernen Elektronik, in nahezu allen elektronischen Schaltungen verwendet
- Kleinsignaltransistoren einfache, ungekühlte Transistoren für analoge
 NF-Technik für Leistungen bis ca. 1 W
- Leistungstransistoren robuste, kühlbare Transistoren für Leistungen oberhalb 1 W
- Hochfrequenztransistoren Transistoren für Frequenzen oberhalb 100 kHz
- **Schalttransistoren** Transistoren mit günstigem Verhältnis von Durchlasszu Sperrstrom, Varianten für kleine und große Leistungen

<u>Hauptanwendungsgebiet</u>

- Hauptanwendungsgebiet von Transistoren: Einsatz in integrierte Schaltungen
- wie beispielsweise RAM-Speicher, Flash-Speichern, Mikrocontroller, Mikroprozessoren und Logikgattern.
- bei hochintegrierten Schaltungen über 1 Milliarde Transistoren auf einem Substrat, auf einer Fläche von einigen Quadratmillimetern

<u>Quellen</u>

- http://de.wikipedia.org/wiki/Transistor
- http://service.projektlabor.tu berlin.de/projekte/sonnenfinder/referate/transen ausarbeitung.pdf
- http://www.elektronikinfo.de/strom/transistoren.htm
- http://www.heise.de/newsticker/meldung/Vor-60-Jahren-Der-erste-Transistor-funktioniert-171005.html
- http://prof-gossner.eu/pdf/13-Feldeffekttransistor.pdf
- https://www.elektronik-kompendium.de/sites/bau/1101211.htm
- http://elektronik-kurs.net/elektronik/jfet-sperrschicht-feldeffekttransistor/
- http://www.elektronik-kompendium.de/sites/slt/0203111.htm