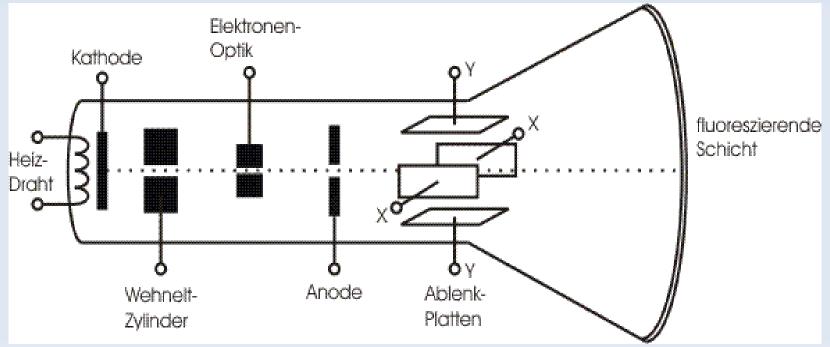
Gliederung:

- Allgemein
- Aufbau einer Braunschen Röhre
- Aufbau eines Oszilloskop (Analog)
- Bedienung und Inbetriebnahme
- 2 Arten von Oszilloskopen im Vergleich
- Zusammenfassung

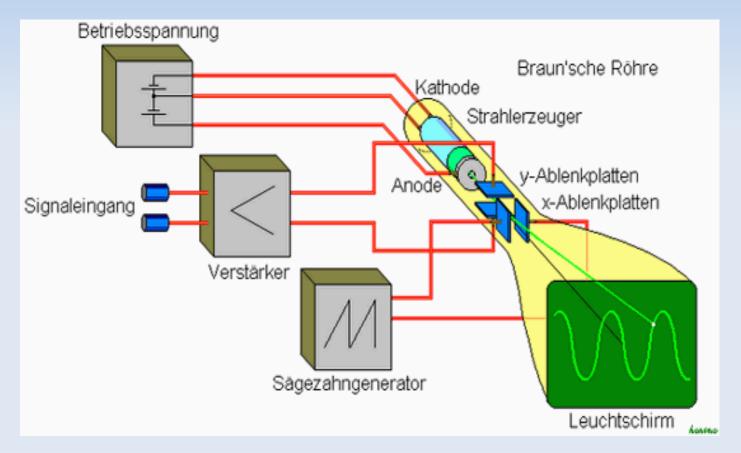
<u>Allgemein</u>

- dient zur Darstellung sich (periodisch) mit der Zeit verändernder Spannungen
- Verlauf der gemessenen Spannung wird auf einem Bildschirm sichtbar gemacht
- Umgangssprachlich wird das Oszilloskop liebevoll Oszi genannt


Aufbau einer Braunschen Röhre

- bildet das Herzstück des Oszilloskops
- besteht aus einem evakuierten Glaskolben
- auf dessen Frontseite ist Innen eine fluoreszierende Schicht aufgetragen

Besteht aus folgenden Elementen:

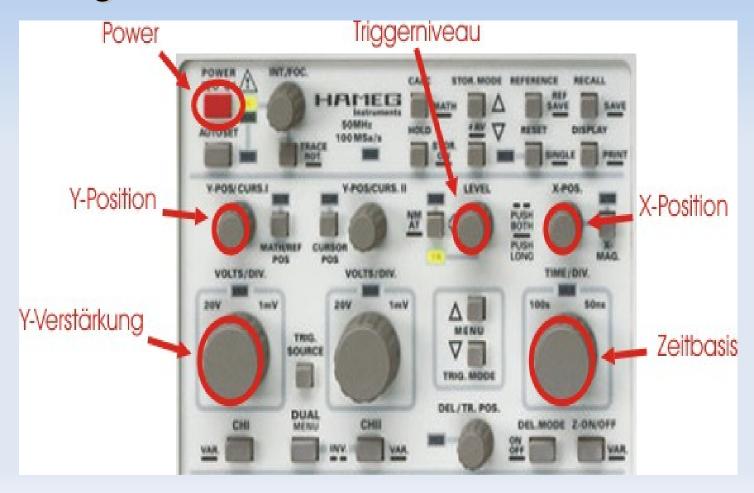

Aufbau einer Braunschen Röhre

Kais Al-Momani

Aufbau eines Oszilloskop

Bedienung und Inbetriebnahme

- verfügt über viele Einstell- und Anschlussmöglichkeiten
- Diese sind je nach Bauart und Model unterschiedlich
- Vor der Inbetriebnahme muss das Gerät in seine Grundeinstellungen gebracht werden:
 - 1.) Alle Tasten haben sich in unbetätigtem Zustand zu befinden
 - 2.) Rot gekennzeichnete Drehknöpfe sind in ihre kalibrierte Stellung zu bringen


Bedienung und Inbetriebnahme

- Wenig später nach dem Drücken des Netzschalters erscheint eine Linie auf dem Bildschirm
- Im ungünstigsten Fall ist sie unscharf und dezentriert.
- Maßnahme:
 - Drehen der Knöpfe

Wie gehts das???

Bedienung und Inbetriebnahme

2 Arten von Oszilloskopen im Vergleich

Digitales	Analoges
- führen eine Analog-Digital- Wandlung durch	- Graph wird auf dem Bildschirm einer Kathodenstrahlröhre mittels Elektronenstrahlen "projeziert"
- sind prinzipiell Speicheroszilloskope	- Die Ablenkung des Elektronenstrahls erfolgt praktisch immer kapazitiv durch elektrische Felder.
 können Daten auch nach der Messung zur Verfügung stellen 	- sind preisgünstiger

2 Arten von Oszilloskopen im Vergleich

Digitales	Analoges
- führen eine Analog-Digital- Wandlung durch	- Graph wird auf dem Bildschirm einer Kathodenstrahlröhre mittels Elektronenstrahlen "projeziert"
- sind prinzipiell Speicheroszilloskope	- Die Ablenkung des Elektronenstrahls erfolgt praktisch immer kapazitiv durch elektrische Felder.
 können Daten auch nach der Messung zur Verfügung stellen 	- sind preisgünstiger

Zusammenfassung

- Was wird gemessen ?
 - zeigen einen Spannungsverlauf über einen kurzen, für das menschliche Auge in Realzeit meist nicht erfassbaren Zeitraum an

Auch Ströme, Drücke und Magnetfelder sind möglich

Voraussetzung: mit einem Wandler muss aus den Grössen zuvor eine Spannung zu erzeugen werden

Zusammenfassung

- Was wird dargestellt?
 - an den Kanälen anliegenden Spannungen können einzeln oder gemeinsam angezeigt werden
 - Bei Mehrkanal-Oszilloskopen: Übertragungskennlinien
 - gewisse Kenngrößen der Spannungsverläufe:
 - Spitzenspannung / Effektivwert
 - Tastverhältnis
 - Frequenz / Periodendauer
 - Anstiegs- und Abfallzeiten

Quellen:

- http://141.7.70.39/ger/theory.htm
- http://www.elektronik-kompendium.de/sites/grd/0307082.htm
- http://www.elektronik-kompendium.de/sites/grd/0307081.htm
- http://de.wikipedia.org/wiki/Oszilloskop
- http://www.mikrocontroller.net/articles/Oszilloskop#Funktion_von_Oszilloskopen
- http://www.b-kainka.de/bast931.jpg
- http://www.amplifier.cd/Test_Equipment/other/images/PM3311_1.jpg
- http://blogs.saschina.org/chemicalparadigms/files/2013/05/confusion2.png
- http://www.warensortiment.de/info-pdf/info-oszilloskop-anwendung-undunterschiede.pdf