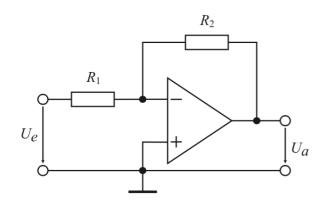
Handout: OPV-Grundschaltungen

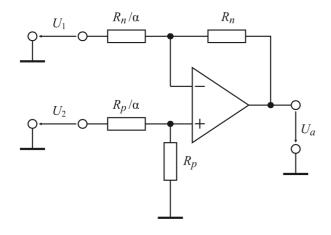
1) Allgemeines zum OPV:

- Ein Operationsverstärker (OPV) ist ein mehrstufiger Gleichspannungsverstärker
- Hat einen invertierenden (-) und einen nichtinvertierenden (+) Eingang
- Weist eine extrem hohe Verstärkung auf
- Die äußere Beschaltung bestimmt die Eigenschaften des OPVs
- Funktion: Differenzspannung U_d wird mit Verstärkung V verstärkt

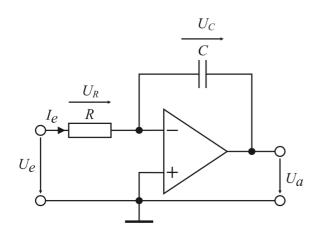

$$U_a = V \cdot U_d = V \cdot (U_p - U_n)$$

Eigenschaft:	Idealer OPV	Realer OPV
Verstärkung	Unendlich	10 ⁴ bis 10 ⁵
Eingangswiderstand	Unendlich	MΩ bis $GΩ$
Ausgangswiderstand	0	≤ 200Ω

2) Betriebsarten:

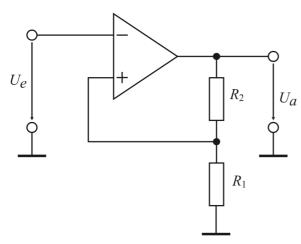

a) Ohne Rückkopplung	b) Gegenkopplung	c) Mitkopplung
 Einfachste äußere Beschaltung Eingangsspannunge n sind direkt an Eingängen angeschlossen Beispiel: Komparator 	 Negative Rückkopplung Ausgangssignal wirkt Eingangssignal entgegen Fehler können kompensiert werden Nachteile: maximale Verstärkung wird reduziert, Instabilität 	 Positive Rückkopplung Ausgangssignal verstärkt Eingangssignal Allgemein treibt sich der Verstärker selbst in Sättigung Nicht jede Schaltung ist instabil Gezielt eingesetzt bei aktiven Filtern

b) Gegenkopplung:


Invertierender Verstärker:

- Die Eingangsspannung wird invertiert und verstärkt am Ausgang wiedergegeben
- Über Widerstand R₂ wird der Ausgang auf den Eingang zurückgekoppelt und das Eingangssignal abgeschwächt
- Der gegengekoppelte OPV stellt seine Ausgangsspannung so ein, dass die Differenzspannung U_d annähernd Null wird
- Da $U_d \approx 0$ gilt, liegen (-) und (+)-Eingang auf Nullpotential (virtuelle Masse)
- Über virtuelle Masse und unendlichem hohen OPV-Eingangswiderstand kann die Verstärkung der Schaltung berechnet werden (durch R₁ und R₂ fließt der gleiche Strom)
- Verwendung der kirchhoffschen Regeln (Maschensatz, Knotenpunktsatz)
- Verstärkung V berechnet sich zu $V = \frac{U_a}{U_e} = -(\frac{R_2}{R_1})$

<u>Differenzverstärker / Subtrahierer:</u>


- Kann eine Rechenoperation (Subtraktion) ausführen
- Für $U_2 = 0$ verhält sich die Schaltung wie ein invertierender Verstärker, Ausgangsspannung errechnet sich analog dazu
- Für $U_2 \neq 0$ erhält man als Ausgangsspannung die Differenz von ${\rm U_1}$ und ${\rm U_2}$ mit einem Faktor α skaliert
- $U_a = \alpha \cdot (U_2 U_1)$

Integrator:

- Ist in der Grundschaltung ein invertierender Verstärker
- Jedoch wird hier das Ausgangssignal über einen Kondensator zurückgekoppelt
- Für den Strom am Kondensator gilt die Beziehung $I_C = C \frac{dU_C}{dt}$
- Daraus folgt für die Ausgangsspannung $U_a = \frac{-1}{RC} \int_0^t U_e dt$
- Integrator verhält sich im Frequenzbereich wie ein Tiefpass

c) Mitkopplung:

Anwendung: Der Schmitt-Trigger lässt sich als Sinus-Rechteck-Wandler benutzen

Invertierender Schmitt-Trigger:

- U_a wird über Spannungsteiler R₁, R₂ auf Eingang mitgekoppelt (Hysterese)
- Um U_a auf den minimalen Wert U_{a,min} zu bringen, muss U_e den Wert U_{e,aus} überschreiten (negative Aussteuergrenze)
- Um ${\rm U_a}$ auf den maximalen Wert ${\rm U_{a,max}}$ zu bringen, muss ${\rm U_e}$ so weit reduziert werden, bis ${\rm U_e}{\le}{\rm U_{e.ein}}$ gilt
- Einschaltschwelle:

$$\boldsymbol{U}_{e,ein} = \frac{\boldsymbol{R}_1}{\boldsymbol{R}_1 + \boldsymbol{R}_2} \cdot \boldsymbol{U}_{a,min}$$

· Ausschaltschwelle:

$$U_{e,aus} = \frac{R_1}{R_1 + R_2} \cdot U_{a,max}$$

Quellen:

- 1) Orglmeister, R.: Skript Analog- und Digitalelektronik, 2012, TU Berlin, Berlin
- Federau, J.: Operationsverstärker Lehr- und Arbeitsbuch zu angewandten Grundschaltungen, 2013, Springer Vieweg, Wiesbaden
- 3) Tietze, U.; Schenk, Ch.: Halbleiter-Schaltungstechnik 13. Auflage, 2010, Springer-Verlag, Berlin